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A B S T R A C T   

Background: air pollution is a complex mixture; novel multipollutant approaches could help understanding the 
health effects of multiple concomitant exposures to air pollutants. 
Aim: to assess the relationship of long-term air pollution exposure with the prevalence of respiratory/allergic 
symptoms and diseases in an Italian multicenter study using single and multipollutant approaches. 
Methods: 14420 adults living in 6 Italian cities (Ancona, Pavia, Pisa, Sassari, Turin, Verona) were investigated in 
2005–2011 within 11 different study cohorts. Questionnaire information about risk factors and health outcomes 
was collected. Machine learning derived mean annual concentrations of PM10, PM2.5, NO2 and mean summer 
concentrations of O3 (μg/m3) at residential level (1-km resolution) were used for the period 2013–2015. The 
associations between the four pollutants and respiratory/allergic symptoms/diseases were assessed using two 
approaches: a) logistic regression models (single-pollutant models), b) principal component logistic regression 
models (multipollutant models). All the models were adjusted for age, sex, education level, smoking habits, 
season of interview, climatic index and included a random intercept for cohorts. 
Results: the three-year average (± standard deviation) pollutants concentrations at residential level were: 20.3 ±
6.8 μg/m3 for PM2.5, 29.2 ± 7.0 μg/m3 for PM10, 28.0 ± 11.2 μg/m3 for NO2, and 70.9 ± 4.3 μg/m3 for summer 
O3. Through the multipollutant models the following associations emerged: PM10 and PM2.5 were related to 
14–25% increased odds of rhinitis, 23–34% of asthma and 30–33% of night awakening; NO2 was related to 6–9% 

* Corresponding author. Pulmonary Environmental Epidemiology Unit, CNR Institute of Clinical Physiology, Via Trieste 41, 56126, Pisa, Italy. 
E-mail address: saramaio@ifc.cnr.it (S. Maio).   

1 Sandra Baldacci, Sara Maio, Giuseppe Sarno, Ilaria Stanisci, Sofia Tagliaferro, Giovanni Viegi (Institute of Clinical Physiology, CNR, Pisa); Salvatore Fasola, 
Stefania La Grutta (Institute of Traslational Pharmacology, CNR, Palermo); Carla Ancona, Lisa Bauleo, Giulia Cesaroni, Paola Michelozzi, Matteo Renzi, Massimo 
Stafoggia (Department of Epidemiology SSR Lazio/ASL Rome 1); Giuseppe Costa, Nicolás Zengarini (Regional Public Health Observatory, ASL TO3, Collegno, Turin); 
Simone Giannini, Andrea Ranzi (Regional Agency for Prevention, Environment and Energy of Emilia-Romagna); Letizia Bartolini, Paolo Giorgi Rossi, Marta Ottone 
(Reggio Emilia AUSL-IRCCS); Nicola Caranci, Chiara Di Girolamo (Regional Health and Social Agency of the Emilia-Romagna); Lucia Bisceglia (Strategic Regional 
Agency for Health and Social of Puglia); Achille Cernigliaro, Salvatore Scondotto (Department of Health and Epidemiological Observatory, Regional Health Authority 
of Sicily Region); Francesca Locatelli, Pierpaolo Marchetti, Alessandro Marcon, Jessica Miotti, Lorena Torroni, Giuseppe Verlato (Department of Diagnostics and 
Public Health, University of Verona); Claudio Gariazzo, Alessandro Marinaccio, Stefania Massari (INAIL, Department of Occupational and Environmental Medicine, 
Roma); Camillo Silibello, Gianni Tinarelli (ARIANET S.r.l.). 

Contents lists available at ScienceDirect 

Environmental Research 

journal homepage: www.elsevier.com/locate/envres 

https://doi.org/10.1016/j.envres.2023.115455 
Received 6 December 2022; Received in revised form 1 February 2023; Accepted 8 February 2023   

mailto:saramaio@ifc.cnr.it
www.sciencedirect.com/science/journal/00139351
https://www.elsevier.com/locate/envres
https://doi.org/10.1016/j.envres.2023.115455
https://doi.org/10.1016/j.envres.2023.115455
https://doi.org/10.1016/j.envres.2023.115455
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envres.2023.115455&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


Environmental Research 224 (2023) 115455

2

increased odds of rhinitis, 7–8% of asthma and 12% of night awakening; O3 was associated with 37% increased 
odds of asthma attacks. Overall, the Odds Ratios estimated through the multipollutant models were attenuated 
when compared to those of the single-pollutant models. 
Conclusions: this study enabled to obtain new information about the health effects of air pollution on respiratory/ 
allergic outcomes in adults, applying innovative methods for exposure assessment and multipollutant analyses.   

1. Introduction 

Outdoor air pollution was estimated to cause 4.5 million premature 
deaths worldwide per year in 2019 (Fuller et al., 2022). In the 27 
countries currently members of the EU, the European Environmental 
Agency (EEA) estimated that in 2020 the premature deaths attributable 
to air pollutant exposure above the 2021 WHO guideline level (WHO, 
2021) were: 238,000 for exposure to particulate matter with an aero-
dynamic diameter less than 2.5 μm (PM2.5), 49,000 for exposure to ni-
trogen dioxide (NO2) and 24,000 for acute exposure to ozone (O3) (EEA, 
2022). 

In 2017, the American Thoracic Society (ATS) and the European 
Respiratory Society (ERS) jointly published a comprehensive review of 
what constitutes an adverse health effect of air pollution: indeed, the 
adverse respiratory effects span the life cycle and affect a wide range of 
illnesses, from symptoms like cough, sputum, wheeze, and dyspnea, to 
premature mortality (Thurston et al., 2017). 

Rapid urbanization and industrialization have increased air pollu-
tion levels and the amount of the exposed population (Flies et al., 2019; 
Eguiluz-Gracia et al., 2020; Sousa et al., 2022). The loss of natural en-
vironments and biodiversity, due to the increase of artificial areas, might 
be related to the increase in the global prevalence of allergic diseases, 
such as asthma and rhinitis; indeed, people living in urban areas more 
frequently suffer from these diseases than those living in rural ones 
(Baldacci et al., 2015; Paciencia and Rufo, 2020; Flies et al., 2019). 
Moreover, the reduced exposure to microbial diversity adversely affects 
the human microbiome and may lead to the development of allergic 
disorders (Flies et al., 2019). Most evidence derives from studies of 
children and young adults; few studies have shown an increase of 
allergic and asthmatic diseases/symptoms in adults, who suffer from a 
more impaired quality of life than their younger counterparts (Nanda 
et al., 2020; Baptist and Nyenhuis, 2016; Cai et al., 2017). 

These long-term adverse effects on respiratory symptoms/diseases 
and lung function in adults and children emerged even for exposure 
levels below current ambient air quality standards (Dominici et al., 
2019; Brunekreef et al., 2021; Stafoggia et al., 2022). Thus, it is 

important to keep analyzing the associations between air pollution and 
health effects, even though air pollution levels would further decrease 
(Brunekreef et al., 2021). 

Indeed, new technologies based on a combination of data from air 
quality monitoring stations, satellite data, territorial data (e.g., land use) 
and meteorological parameters, provide fine temporal and spatial esti-
mates of air pollutants exposure allowing better investigation of long- 
term health effects (Stafoggia et al., 2019; Cilluffo et al., 2018). 

Although the typical approach used in epidemiological studies takes 
into account one pollutant or at most two pollutants at a time (Blan-
giardo et al., 2019), a new challenge derives from the need to use 
multipollutant approaches that more realistically describe the 
complexity of air pollution concentrations in the air we breathe. 

In single-pollutant models, it is unclear whether an observed asso-
ciation reflects the effect of the analyzed pollutant or it acts as a sur-
rogate for other pollutants, possibly originating from the same source 
(Stafoggia et al., 2017a). On the other hand, the analysis of the health 
effects of different pollutants with conventional statistical approaches 
(all pollutants included in a single regression model) often may produce 
unstable estimated parameters with large standard errors due to high 
correlation between these air pollutants. Therefore, advanced statistical 
methods might improve the assessment of the health effects of exposure 
to mixtures or the combined health effects of multiple exposures 
(Molitor et al., 2016; Stafoggia et al., 2017a; Traini et al., 2022). 

Finally, data from analytical epidemiological studies allow to control 
for individual potential confounders, such as lifestyle and socioeco-
nomic variables, overcoming some of the limitations of the studies based 
on health data from registers or on ecological data (Gandini et al., 2018). 

In this framework, the “Big data in Environmental and occupational 
Epidemiology” (BEEP) project and the “Use of BIG data for the evalua-
tion of the acute and chronic health Effects of air Pollution in the Italian 
population” (BIGEPI) project, co-funded by the Italian Workers’ 
Compensation Authority (INAIL), were designed. Their aim was to 
investigate the health effects of air pollution and meteorological pa-
rameters on the Italian general population through the integration of 
national data including land use, satellite, modelled meteorological 
fields and atmospheric composition variables, mortality, hospitaliza-
tions, morbidity, work injuries and commuting accidents (Stafoggia 
et al., 2019; Renzi et al., 2022; Gariazzo et al., 2022). 

BEEP and BIGEPI projects provided the unique opportunity to eval-
uate the long-term air pollution effects on Italian analytical epidemio-
logical surveys, by linking air pollutant levels estimated at the 
residential address to the individual health data, adjusting for individual 
potential confounders and using advanced statistical analyses for mul-
tipollutant assessments. 

In particular, the aim of the present work was to increase the 
knowledge about the relationship of air pollution exposure with the 
prevalence of respiratory/allergic symptoms and diseases in Italian 
adults living in areas characterized by a wide range of air pollution 
concentrations, and to compare single and multipollutant approaches. 

2. Methods 

2.1. Study population and design 

The study population includes subjects (n = 14,420) participating in 
two different observational analytical studies aimed at investigating 
allergic and respiratory conditions in the Italian population: the Pisa 
study and the Gene-Environment Interactions in Respiratory Diseases 

Abbreviations 

BEEP the “Big data in Environmental and occupational 
Epidemiology” project 

BIGEPI the “Use of BIG data for the evaluation of the acute and 
chronic health Effects of air Pollution in the Italian 
population” project 

INAIL: the Italian Workers’ Compensation Authority 
GEIRD the “Gene-Environment Interactions in Respiratory 

Diseases” study 
PI1 the Pisa study first survey 
PI2 the Pisa study second survey 
PI3 the Pisa study third survey 
IMCA “Indicators for Monitoring COPD and Asthma in the EU 

(IMCA II)” project 
ECRHS the “European Community Respiratory Health Survey” 
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(GEIRD) study. 
The Pisa study is a multistage stratified family-cluster random study 

investigating subjects from the general population living in Pisa over 
three subsequent surveys: first survey (PI1) (1985–1988); second survey 
(PI2) (1991–1993); third survey (PI3) (2009–2011). For these analyses 
data from the PI3 survey were analyzed (Table A1 of Supplementary 
Material (SM)). PI3 consisted of the subjects participating in both PI2 
and PI3 and of a new sample of individuals (newborns, new spouses and 
subjects not available in the previous survey). Detailed information on 
population characteristics and methods are available elsewhere (Maio 
et al., 2016; Viegi et al., 1999). 

GEIRD is a two-stage multicenter study investigating adult subjects 
from the general populations living in seven Italian cities between 2005 
and 2011 (de Marco et al., 2010). In stage 1, a cross-sectional postal 
survey was conducted on new or pre-existing random samples from the 
general population. For these analyses, data from subjects living in 
Turin, Pavia, Verona, Ancona, and Sassari were analyzed (Table A1 of 
SM). Overall, 10 cohorts of GEIRD study for 5 cities were included in the 
present work. Detailed information on population characteristics and 
methods are available elsewhere (de Marco et al., 2010). 

The six cities taking part in this study represent different Italian 
geoclimatic area (Fig. 1): three of them – Turin, Pavia, and Verona – are 
located in the northern part of Italy (Po River Valley) and characterized 
by a subcontinental climate (Köppen climate classification (Beck et al., 
2020): CFA, humid subtropical climate); the other three cities are 
located in central (Ancona and Pisa) and insular part (Sassari) of Italy 
and are characterized by a typical Mediterranean climate (Köppen 
climate classification: CSA, hot-summer Mediterranean climate). The 
subcontinental zone has a lower annual average temperature and a 
wider annual temperature range than the Mediterranean zone (Pesce 
et al., 2016; Marchetti et al., 2017). 

2.2. Investigated respiratory symptoms/diseases 

In the Pisa study, information on allergic/respiratory symptoms/ 
diseases and risk factors was obtained through standardized 
interviewer-administered questionnaires developed within the Euro-
pean project “Indicators for Monitoring COPD and Asthma in the EU 
(IMCA II)” (Maio et al., 2016). 

In the GEIRD study, a cross-sectional screening questionnaire was 
administered (www.geird.org) using a modified version of the European 
Community Respiratory Health Survey (ECRHS) questionnaire, 
including items on allergic/respiratory symptoms/diseases and risk 

factors (de Marco et al., 1999). 
Since different questionnaires were used in Pisa and GEIRD studies, 

only comparable questions on asthma and rhinitis were used for these 
analyses, as detailed in the first section of the SM. 

The following outcomes were taken into account: allergic rhinitis, 
rhinitis symptoms, rhinitis medications, asthma, attacks of asthma, 
asthma medications, asthma like symptoms (wheezing, attacks of 
breathlessness with wheezing, night awakenings due to shortness of 
breath). 

Moreover, combined outcomes for rhinitis and asthma were derived 
taking into account simultaneously the presence of symptoms, diagnoses 
or medicine use: combined rhinitis (allergic rhinitis or rhinitis symptoms 
or rhinitis medications); combined asthma (asthma diagnosis or asthma 
attacks or asthma medications). The combined outcomes are meant to 
identify those who are most susceptible and at greater probability of 
having harmful effects from air pollution exposure due to a current or 
past condition that could exacerbate for a long-term air pollution 
exposure. 

Participants were informed about all the research aspects and signed 
informed consents were obtained from all the participants before the 
questionnaire completion. Approval to conduct the study was granted by 
the local ethical committee in each participating center. 

2.3. Environmental exposure 

Environmental exposure to particulate matter (PM) with diameter 
≤10 μm (PM10), PM2.5, NO2 and summer (from April to September) O3 
was estimated within the BEEP project. 

PM mean concentrations were derived from machine learning 
Random Forest (MLRF) algorithms driven by satellite observations and 
spatial and spatial-temporal data, as described elsewhere (Stafoggia 
et al., 2017b, 2019). Briefly, for each day of the years between 2006 and 
2015, and for each squared kilometer of Italy, several spatial (land 
coverage, road network, light at night, impervious surface areas, pop-
ulation density, elevation) and spatio-temporal predictors (such as 
satellite-based aerosol optical depth - AOD, PM monitored data from all 
the available monitoring sites, air temperature and other meteorological 
parameters from ERA5, point emission sources, total emissions and, 
resident population) were collected. A four-stage model to predict daily 
PM10 (2006–2015) and PM2.5 (2013–2015) concentrations for each 1 ×
1 km grid cell was developed calibrating the aforementioned predictors 
to PM10 and PM2.5 monitoring data. The shorter period of analysis for 
PM2.5 was due to a more recent installation of PM2.5 monitors in Italy. 

Fig. 1. Geographical distribution of the 6 cities. 
Legend: modified from Pinna M, L’atmosfera e il clima, Torino, UTET, 1978, p. 470. 
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Cross-validated R2 were 0.75 and 0.81 for PM10 and PM2.5, respectively, 
demonstrating good predictive properties of the model at unmeasured 
locations (Stafoggia et al., 2019). 

NO2 and O3 mean concentrations were derived developing an inte-
grated approach coupling a chemical transport model (CTM) with ma-
chine learning techniques, as described elsewhere (Silibello et al., 2021). 
Briefly, simulations, at a spatial resolution of 5 km, performed by the 
Flexible Air quality Regional Model (FARM), were obtained for each day 
of the years between 2013 and 2015. These simulations, together with 
the same spatial and spatiotemporal data used for modeling PM, with 
the exception of AOD, were used as predictors by a MLRF algorithm to 
produce daily concentrations at higher resolution (1 km) over the na-
tional territory. Cross-validated R2 were 0.60 and 0.80 for NO2 and O3, 
respectively, demonstrating good predictive properties of the model at 
unmeasured locations (Silibello et al., 2021). 

Shtein et al. (2020) compared 4 approaches to estimate air pollution 
concentrations at unmeasured locations: MLRF, extreme gradient 
boosting (XGBoost), Mixed Effect Models, and a pure Chemical Trans-
port Model (CTM). XGBoost and RF algorithms outperformed the other 
methods in terms of cross-validation statistics. The choice of using MLRF 
was due to its relatively simple use and its diffusion among experts in the 
field of environmental exposure. 

The daily series of exposure levels at 1 Km resolution estimated for 
the four pollutants were linked to the residential addresses of the sub-
jects according to their spatial locations, and a three-year average 
exposure level was calculated for the period 2013–2015 (years with 
available estimates for all the pollutants). 

2.4. Covariates and potential confounders 

The following covariates were collected from the questionnaire: sex, 
age (categorized in 18–44 yrs, 45–64 yrs, 65+ yrs), education level (0–8 
yrs of education, 9–13 yrs, >13 yrs), smoking habits (non smoker, ex- 
smoker with <15 pack-years, ex-smoker with ≥15 pack-years, smoker 
with <15 pack-years, smoker with ≥15 pack-years), and the season in 
which the questionnaire was completed (spring, summer, autumn, 
winter). 

A climatic index, computed by Pesce et al. (2016) through a principal 
component analysis (PCA) for all the 110 Italian provinces, was used to 
take into account the different climatic characteristics of the six cities 
mainly due to annual global solar radiation, annual mean temperature, 
range of temperature, and rainfalls. The value was minimum in the 
Subcontinental centers of Northern Italy and maximum in the Mediter-
ranean centers of Southern Italy. In particular, the following values were 
imputed for our six cities: − 1.89 for Pavia, − 1.52 Turin, − 0.91 Verona, 
− 0.35 Pisa, 0.76 Ancona and 2.41 Sassari. 

This index was demonstrated to play a role in determining the 
between-cities heterogeneity in the prevalence of asthma, with higher 
prevalence in dry-hot Mediterranean climates and lower in rainy-cold 
northern climates (Pesce et al., 2016). 

2.5. Statistical analyses 

All the statistical analyses were performed using R version 4.2.1 (R 
Foundation for Statistical Computing, Vienna, Austria). The character-
istics of the study participants were summarized through numbers (No.) 
and percentages (%). Comparisons between the cities were carried out 
using the chi-square test for categorical variables and the Kruskal-Wallis 
test for continuous variables. The three-year (2013–2015) average 
pollutant concentrations were summarized through the city-specific 
mean (SD), median, range (min-max), and interquartile range (IQR); 
correlations across pollutants were summarized using Spearman’s cor-
relation coefficients. Statistical significance was set at p-value < 0.05. 

The extent of multicollinearity in the exposure matrix was assessed 
by calculating the variance inflation factor (VIF) for the four pollutants. 
In general, VIFs of 2.5 or larger are considered indicative of considerable 

collinearity, since it would become difficult to distinguish the inde-
pendent contribution of the pollutants with such large VIFs (Johnston 
et al., 2018). 

The association between the four pollutants and each respiratory/ 
allergic outcome was assessed using two different approaches: a) a set of 
four single-pollutant logistic regression models with a cohort-level 
random intercept (11 cohorts for 6 cities); b) a multipollutant model, 
i.e., a principal component logistic regression (PCLR) model with a 
cohort-level random intercept (11 cohorts for 6 cities). All the models 
were adjusted for age, sex, education level, smoking habits, interview 
season, and climatic index. 

PCLR is an extension of principal component regression (PCR) aim-
ing at removing the collinearity of input variables through the PCA. The 
method consists of three steps. In the first step, PCA is performed on the 
(scaled and centered) matrix of the four air pollutants, and a matrix of 
four principal components is obtained. Then, the optimal number of 
principal components, that is the minimum number of principal com-
ponents explaining at least 80% of total pollutants variance, is selected. 
In the second step, a logistic regression model is estimated using the 
selected principal components and the potential confounders as cova-
riates. In the third step, the regression coefficients of the selected prin-
cipal components are back transformed to the original scale of the 
pollutants, providing substantially improved estimates in the case of 
multicollinearity (Aguilera et al., 2006). 

Pollutant effects were expressed as odds ratios (ORs) per 10 μg/m3 

increases with 95% confidence intervals (CIs), and were visually dis-
played. ORs per 5 μg/m3, 1 μg/m3 and IQR increases were also reported. 

Since the age class ≥65 yrs was poorly or not represented in Pavia, 
Turin and Ancona, a sub-analysis was run including only the three 
centers whose participants represented the entire age distribution of an 
adult general population (Pisa, Sassari and Verona) (8 cohorts). 

3. Results 

A total of 14,420 individuals aged 18–103 years (52.5% females) 
were included; 57.6% were 18–44 yrs, 30.9% 45–64 yrs and 11.5% 65+
yr old. Subjects were mainly characterized by medium-high education 
level (65.7%), 9.4% were heavy smokers (≥15 pack-yrs), 13.5% light 
smokers (<15 pack-yrs), 8.4% heavy ex-smokers and 15.8% light ex- 
smokers. Subjects were more frequently interviewed in spring 
(36.0%), followed by winter (23.4%) and autumn (22.7%). 

Almost all descriptive characteristics showed statistically significant 
differences between the six cities (Table 1). 

Overall, rhinitis showed the highest prevalence for all the considered 
outcomes (diagnosis 22.9%, symptoms 29.8%, medicine use 18.0%, 
rhinitis combined 38%), followed by asthma-like symptoms (night 
awakenings 9.7%, wheezing 9.4%) and asthma (asthma diagnosis 9.6%, 
asthma combined 10.6%). The lowest prevalence was found for attacks 
of breathlessness with wheezing (6.0%), attacks of asthma (5.6%) and 
asthma medications (4.7%). 

Statistically significant differences were found in the prevalence of 
symptoms, diseases and use of medicines between the six cities 
(Table 2). 

The three-year (2013-2015) average (±SD) pollutant concentrations 
at residential level were: 20.3 ± 6.8 µg/m3 for PM2.5 (median value 
24.5, IQR 10.4), 29.2 ± 7.0 µg/m3 for PM10 (median value 33.1, IQR 
9.8), 28.0 ± 11.2 µg/m3 for NO2 (median value 26.6, IQR 12.9), and 
70.9 ± 4.3 µg/m3 for summer O3 (median value 70.3, IQR 4.2). Statis-
tically significant differences were found in the air pollutant concen-
tration values between the six cities (Table 3). 

The air pollutant correlation matrix showed high positive correla-
tions among PM2.5, PM10 and NO2 (ranging from 0.745 to 0.986) and 
moderate-low negative correlations between O3 and the other pollutants 
(ranging from − 0.265 to − 0.562) (Fig. 2). Consistently, the VIFs high-
lighted considerable collinearity issues: VIF(PM2.5) = 56.92, VIF(PM10) 
= 62.92, VIF(NO2) = 3.41, VIF(O3) = 2.21. 

S. Maio et al.                                                                                                                                                                                                                                    



Environmental Research 224 (2023) 115455

5

With regard to the four principal components, they were associated 
with the following cumulative percentages of explained variance: C1 =
73%, C2 = 94%, C3 = 100%, C4 = 100%. Thus, the first 2 components 
were selected since they explained over 80% of total pollutants variance. 
The correlation of the coefficients between the original variables and the 
four principal components is shown in Table 4. 

Overall, the ORs estimated through the multipollutant models (ef-
fects adjusted for other pollutants) were attenuated when compared to 
those of the single-pollutant models (effects not adjusted for other pol-
lutants) (Figs. 3–5; Table A2 of SM). Significant protective effects of O3 
(Figs. 3 and 5c) were no longer observed after the multipollutant 
adjustment (on the contrary, they tended to OR>1). 

Focusing on the multipollutant models, significant associations were 
observed among exposure to PM2.5, PM10, and NO2, and most health 
outcomes with comparable ORs for PM2.5 and PM10, and lower ORs for 
NO2 (Figs. 3–5, Table A2). O3 exposure was significantly associated only 
with asthma attacks (OR 1.37, 95% CI 1.08–1.75 per 10 μg/m3 in-
crease). Focusing on the combined outcomes, rhinitis was significantly 
associated with increasing exposure to PM2.5 (OR 1.17, 95% CI 
1.06–1.30), PM10 (OR 1.16, 95% CI 1.06–1.26) and NO2 (OR 1.07, 95% 
CI 1.04–1.10) (Fig. 3d, Table A2). 

Combined asthma was significantly associated with increasing 
exposure to PM2.5 (OR 1.26, 95% CI 1.08–1.47), PM10 (OR 1.23, 95% CI 
1.08–1.40) and NO2 (OR 1.07, 95% CI 1.03–1.12) (Fig. 4d, Table A2). 
Concerning asthma-like symptoms (Fig. 5), only night awakenings were 
significantly associated with air pollutants exposure: OR 1.33, 95% CI 
1.16–1.52 for PM2.5; OR 1.30, 95% CI 1.16–1.46 for PM10; OR 1.12, 95% 
CI 1.08–1.17 for NO2 (Fig. 5c). 

ORs per 5 μg/m3 and 1 μg/m3 increases were reported in the SM 
(Tables A.3-A.4). As expected, the significant relationships were un-
changed whilst the magnitude of the ORs decreased. With regard to IQR 
increases (Tables A.5), the significant relationships were unchanged 
whilst the magnitude depended on whether IQR was slightly larger or 
slightly lower than 10 μg/m3. 

Results of the sub-analysis including only the cities of Pisa, Sassari, 
and Verona (which well represented all age groups from 18 to 84 years) 
showed consistent associations with higher OR values, especially for 
NO2, as well as new statistically significant associations among summer 
O3 and night awakenings (OR 1.23, 95% CI 1.10–1.49), and combined 
asthma (OR 1.27, 95% CI 1.00–1.61) (Table A.6). 

Table 1 
Descriptive characteristics (%) (n = 14420).   

Pisa (n = 1615) Verona (n = 5756) Pavia (n = 1413) Turin (n = 1707) Ancona (n = 1350) Sassari (n = 2579) p-value 

Age rangea 18–103 20–84 20–64 20–64 20–44 20–84 – 
Age classesa:       – 
18–44 yrs 29.8 51.9 67.4 63.6 100.0 57.2  
45–64 yrs 32.2 37.8 32.6 36.4  25.4  
≥65 yrs 38.0 10.4    17.5  
Sex:       0.061 
males 47.3 47.2 47.8 44.8 48.5 49.6  
females 52.7 52.8 52.2 55.2 51.5 50.4  
Educational level:       <0.001 
0–8 yrs 55.0 35.4 31.9 25.5 16.7 34.7  
9–13 yrs 32.0 44.6 46.8 49.0 60.2 40.8  
>13 yrs 13.0 20.0 21.3 25.5 23.1 24.5  
Smoking habits:       <0.001 
smoker≥15 pky 9.5 9.5  10.1  10.7  5.7  9.9   

smoker<15 pky 10.4 12.3 13.5 15.5 20.6 13.0  
ex-smoker≥15 pky 16.1 7.8 6.3 5.5 1.7 11.4  
ex-smoker<15 pky 16.9 16.9 15.8 13.9 12.7 15.7  
non smoker 47.1 53.5 54.3 54.4 59.3 50.0  
Interview season:       <0.001 
spring 34.4 18.3  57.0  52.3  61.0  40.6   

summer 12.9 14.9 22.8 24.4 23.6 18.0  
autumn 31.4 22.9 18.3 17.3 1.5 33.8  
winter 21.3 43.9 1.9 6.0 13.9 7.6   

a age range and age classes of the samples depend on the different study design and sample selection, as detailed in Table A1 pky: pack-years. 

Table 2 
Prevalence of respiratory/allergic diagnosis, symptoms, use of medicines (%).   

Pisa Verona Pavia Turin Ancona Sassari p-value 

Rhinitis 
Allergic rhinitis 15.5 22.2 23.3 24.2 28.6 25.3 <0.001 
Rhinitis symptoms 33.2 31.2 32.9 3.8 40.5 34.0 <0.001 
Rhinitis medications 30.4 14.2 14.8 15.8 23.6 18.6 <0.001 
Rhinitis (combined)a 48.7 35.9 36.9 30.7 45.5 37.2 <0.001 
Asthma 
Asthma diagnosis 8.3 8.9 7.8 8.2 10.7 13.2 <0.001 
Attacks of asthma 3.2 5.2 4.4 6.5 4.8 8.5 <0.001 
Asthma medications 7.2 3.5 3.2 4.3 3.9 7.5 <0.001 
Asthma (combined)b 10.7 9.3 9.6 9.3 11.3 14.3 <0.001 
Asthma-like symptoms 
Wheezing 7.6 6.4 10.3 10.8 11.3 14.5 <0.001 
Attacks of breathlessness with wheezing 7.6 7.0 2.9 3.4 1.7 8.5 <0.001 
Night awakenings 6.8 9.0 9.8 12.5 9.2 11.7 <0.001  

a allergic rhinitis or rhinitis symptoms or rhinitis medications; b asthma diagnosis or asthma attacks or asthma medications. 
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Table 3 
Summary statistics of the three-year (2013–2015) average pollutants concentrations (μg/m3).   

Pisa Verona Pavia Turin Ancona Sassari p-value 

PM2.5:       <0.001  

mean ± SD 16.5 ± 0.7 24.6 ± 2.7 25.3 ± 1.1 26.8 ± 2.6 15.1 ± 0.6 8.9 ± 0.7  
median 16.7 25.3 25.3 27.5 15.2 9.0  
IQR 0.6 1.0 0.9 2.4 0.5 0.7  
min-max 11.8–18.0 8.9–26.7 19.7–29.0 6.8–30.9 12.8–16.8 7.3–11.5  
PM10:       <0.001 
mean ± SD 24.9 ± 1.0 33.2 ± 3.9 34.2 ± 1.7 36.1 ± 3.5 25.1 ± 1.5 17.9 ± 1.2  
median 25.1 34.2 34.3 36.9 25.3 18.3  
IQR 0.6 1.3 1.9 2.4 1.6 1.4  
min-max 19.1–27.5 11.1–36.2 26.6–39.1 8.0–42.2 19.6–27.6 11.7–21.7  
NO2:       <0.001 
mean ± SD 23.4 ± 3.8 29.5 ± 6.6 28.1 ± 4.4 49.6 ± 9.4 23.8 ± 4.3 15.2 ± 4.2  
median 23.6 30.2 28.7 51.5 24.2 15.2  
IQR 5.2 8.4 5.6 12.3 4.7 6.0  
min-max 9.9–35.4 5.9–40.3 16.9–39.6 5.8–67.4 10.0–32.9 4.5–27.4  
Summer O3:       <0.001 
mean ± SD 70.0 ± 2.5 72.3 ± 5.1 69.8 ± 1.3 66.8 ± 2.8 69.7 ± 2.7 72.1 ± 3.9  
median 69.8 71.8 69.6 66.7 68.7 70.4  
IQR 4.0 3.5 1.9 3.2 2.3 3.4  
min-max 65.5–81.5 61.6–103.4 66.5–75.3 59.9–85.6 62.2–82.0 63.0–87.8  

SD: standard deviation; IQR: interquartile range. 

Fig. 2. Air pollutant correlation matrix (average concentrations in 2013–15). 
Black points: scatter plots of the concentrations (μg/m3) for each pollutant pair. Solid lines: non-parametric density functions of each single pollutant concentration. 
Corr: Spearman’s rank correlation coefficients for each pollutant pair. *** p-value <0.001. 
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4. Discussion 

We found a strong correlation among air pollutant exposure esti-
mated at residential level and respiratory/allergic symptoms/diseases in 
Italian adult general population, identifying PM2.5 and PM10 as the main 
drivers of the detrimental health effect, through an innovative multi-
pollutant approach. PM10 and PM2.5 were related to 14–25% increased 
odds of having rhinitis, 23–34% of having asthma and 30–33% of having 
night awakening; NO2 was related to 6–9% increased odds of having 
rhinitis, 7–8% of having asthma and 12% of having night awakening; O3 
was linked to 37% increased odds of having asthma attacks. 

As regards rhinitis, in multipollutant models, PM10 and PM2.5 

Table 4 
Correlation coefficients among the original variables and the four principal 
components.   

C1 C2 C3 C4 

PM2.5 0.921 0.359 0.136 0.063 
PM10 0.955 0.254 0.139 − 0.066 
NO2 0.914 − 0.123 − 0.385 0.001 
Summer O3 − 0.576 0.801 − 0.165 − 0.007  

Fig. 3. Results of single-pollutant and multipollutant logistic regression models (OR and 95% CI for 10 μg/m3 increases): rhinitis.  

Fig. 4. Results of single-pollutant and multipollutant logistic regression models (OR and 95% CI for 10 μg/m3 increases): asthma.  
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exposures were related to 14–25% increased odds and NO2 exposure to 
6–9% increased odds for each 10 μg/m3 increase of pollutant. In the 
single-pollutant models, these odds were higher: 40–65% for PM10 and 
PM2.5 exposure and 12–20% for NO2 exposure. 

It is known that PM can affect the respiratory system, but relatively 
few studies assessed the chronic effect on allergic rhinitis, especially in 
adulthood (Li et al., 2022). On the contrary, this disease is an important 
public health problem, which affects the quality of life and increases the 
health care burden (Baptist and Nyenhuis, 2016). Moreover, there is 
increasing evidence for the association between allergic rhinitis and air 
pollutants, although some discordant results exist (Li et al., 2022). A 
recently published meta-analysis on 35 studies across 12 countries, 
including people of all ages, reported increased ORs of allergic rhinitis 
related to 10 μg/m3 increment of PM10 (from 28 studies, 4 in adults: OR 
1.13, 95% CI 1.04–1.22), PM2.5 (from 15 studies, 4 in adults: OR 1.12, 
95% CI 1.05–1.20), NO2 (from 27 studies, 3 in adults: OR 1.13, 95% CI 
1.07–1.20) and O3 (from 12 studies, 2 in adults: OR 1.07, 95% CI 
1.01–1.12) (Li et al., 2022). 

Taking into account the studies focused on the general adult popu-
lation, our results from single-pollutant models are comparable with 
those of recent studies showing an increased probability of having 
allergic rhinitis (defined by questionnaire). Data from two large multi-
center epidemiological European studies on 1,408 adult subjects showed 
that increases in air pollution exposure (single-pollutant model) were 
associated with the severity of rhinitis: an increase of 10 μg/m3 of PM10 
yielded an OR 1.53 (95% CI 1.07–2.19) for moderate severity and 1.72 
(1.23–2.41) for high severity; an increase of 5 μg/m3 of PM2.5 showed an 
OR 1.42 (95% CI 1.08–1.87) for mild severity, OR 1.73 (95% CI 
1.25–2.40) for moderate severity, OR 1.91 (95% CI 1.40–2.60) for high 
severity; an increase of 10 μg/m3 of NO2 produced an OR of 1.15 for all 
the severity levels (Burte et al., 2020). A Lithuanian study on 1141 adult 
subjects found an OR of 1.29 (95% CI 1.02–1.62) for allergy diagnosis 
associated with an IQR increase (4.01 μg/m3) of PM10 (single-pollutant 
model) (Dedele et al., 2019). Finally, a Chinese study on 40,279 adults 
from eight cities found an OR of 1.17 (95% CI 1.06–1.31) of having 
allergic rhinitis for 10 μg/m3 increase of NO2 (single-pollutant model) 
(Wang et al., 2021). 

As regards asthma, in multipollutant models, PM10 and PM2.5 ex-
posures were related to 23–34% increased odds and NO2 exposure to 

nearly 7–8% increased odds for each 10 μg/m3 pollutant increase. In the 
single-pollutant models, these odds were higher: 35–55% for PM10 and 
PM2.5 exposures and 12% for NO2 exposure. 

There is evidence that air pollution has a negative impact on asthma 
outcomes in both adult and pediatric populations, inducing asthma 
symptoms, exacerbations and decreased lung function (De Matteis et al., 
2022). Adult asthma seems to be different from childhood asthma and it 
is associated with other risk factors (Trivedi and Denton, 2019); 
nevertheless, much of the existing evidence focuses on childhood 
asthma. A separate focus on this specific phenotype becomes important 
considering that only few studies have investigated the role of air 
pollution on adult asthma prevalence, mostly yielding null or weak 
positive associations (Cai et al., 2017). 

Data from three adult European cohorts showed that PM10 and NO2 
(per 10 μg/m3 increase, single-pollutant model) were associated with 
lifetime asthma prevalence: OR 1.13 (95% CI 1.10–1.16) and OR 1.02 
(95% CI 1.01–1.03), respectively. Effects were slightly larger in those 
aged ⩾50 years (Cai et al., 2017). A recent Irish study on adult subjects 
(>50 yrs) found that a 1 ppb increase (about 2 μg/m3) in local NO2 
(single-pollutant model) was associated with a 0.15–0.25 percentage 
point increase in the probability of suffering from self-reported asthma 
(Carthy et al., 2021). Finally, a Chinese study on 40,279 adults from 
eight cities found an OR of 1.24 (95% CI 1.09–1.42) of having asthma for 
10 μg/m3 of NO2 (single-pollutant model) (Wang et al., 2021). Our re-
sults were comparable with these findings. 

As regards asthma-like symptoms, in multipollutant models, PM10 
and PM2.5 exposures were related to 30–33% increased odds of night 
awakening and NO2 exposure to 12% increased odds of night awakening 
for each 10 μg/m3 pollutant increase; O3 exposure was related to 37% 
increased odds of having asthma attacks. In the single-pollutant models, 
these odds were higher: 80–120% for PM10 and PM2.5 exposures and 
25% for NO2 exposure; no significant result was found for O3. 

In a French population-based cohort of about 135,000 adults, asso-
ciations between asthma symptoms and air pollution exposure (single- 
pollutant model) were found: an IQR increase (4.86 μg/m3) of PM2.5 was 
associated with night awakening due to shortness of breath (OR 1.19, 
95% CI 1.13–1.25), as well as wheezing and breathlessness (OR 1.14, 
95% CI 1.10–1.18) and attacks of shortness of breath at rest (OR 1.23, 
95% CI 1.18–1.28); comparable ORs were found for an IQR increase 

Fig. 5. Results of single-pollutant and multipollutant logistic regression models (OR and 95% CI for 10 μg/m3 increases): asthma-like symptoms.  
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(17.3 μg/m3) of NO2 (Keirsbulck et al., 2022). Previously, a French study 
had shown associations between asthma symptoms in the last 3 months 
(asthma attacks or dyspnea or having been woken up by an asthma 
attack or shortness of breath) and IQR increase of summer O3 (13 μg/m3) 
and PM10 (3 μg/m3) (OR 1.59, 95% CI 1.10–2.30 and OR 1.38, 95% CI 
1.12–1.69, respectively) in adults; no significant effect was found for 
NO2 (Jacquemin et al., 2012). 

These results are in line with our findings, highlighting a detrimental 
effect of air pollutants on asthma attacks and night awakenings. In 
particular, it is to point out the significant association between asthma 
attacks and increased summer O3. 

However, inconsistent results about the long-term health effect of O3 
have been reported: suggestive associations with respiratory mortality, 
new-onset asthma in children and increased respiratory symptoms in 
subjects with asthma (Nuvolone et al., 2018; Zhang et al., 2019); but 
also, null or inverse associations (Nuvolone et al., 2018; Stafoggia et al., 
2022). Sometimes, the uncertainty in interpreting results is caused by 
the interaction between O3 and PM2.5 levels (Nuvolone et al., 2018). 
Indeed, in our study, protective effects were found in single-pollutant 
models. After the application of a multipollutant approach, these ef-
fects were no longer observed. A similar trend was recently found in a 
large multicenter European study when analyzing the long-term effect of 
air pollution on respiratory mortality: O3 showed inverse associations in 
single-pollutant models, but effects shifted towards the null and became 
no significant in two-pollutant models including NO2 or PM2.5 (Stafoggia 
et al., 2022). 

O3, PM, NO2 and other air pollutants share a wide variety of effects 
on human health; controlling for the confounding effects of PM and NO2 
is a critical issue in evaluating ozone-specific health effects. During 
summer, when O3 concentrations are higher, a positive correlation with 
the other pollutants has been often observed. The O3 effects mainly 
observed during summer may be a result of the higher concentrations 
measured during warmer months, but also of the longer time spent 
outdoors yielding higher exposures. On the other hand, during winter 
when photochemical production of O3 is limited, negative correlations 
between O3 and primary pollutants emitted from vehicles and heating 
sources are observed. For this reason, fitting models taking into account 
the confounding effects of other air pollutants is widely recommended 
(Nuvolone et al., 2018). 

In view of the current debate on the proposal of the European 
Commission for new rules for cleaner air, it is important to point out that 
our findings highlight detrimental effects in subjects exposed to average 
annual levels of air pollution below the current EU limits, with the 
exception of those living in Turin (26.8 μg/m3 PM2.5 and 49.6 μg/m3 

NO2) (European Commission, 2008). Conversely, all the subjects lived in 
areas with air pollution levels not complying with the 2005 and 2021 
WHO guidelines, except for PM2.5 (8.9 μg/m3) and PM10 (17.9 μg/m3) in 
Sassari which complied with the 2005 guidelines (WHO, 2005; WHO, 
2021). 

To the best of our knowledge, there are no published studies applying 
all the three steps of the PCLR approach (in particular, back- 
transformation of the mixture effects to the original scale of pollut-
ants) to assess the relationship between long-term air pollution exposure 
and respiratory/allergic outcomes. Therefore, our results obtained 
through PCLR should be considered with caution because we did not 
have the opportunity to compare our findings with those of papers based 
on similar approaches. On the other side, innovative information on this 
topic is provided: in fact, in single-pollutant models, it is not clear 
whether an observed association reflects the effect of the pollutant 
analyzed or if it acts as a surrogate for other pollutants possibly origi-
nating from the same source (Stafoggia et al., 2017a). Thus, using 
single-pollutant models, an overestimation of the effect may be deter-
mined by not considering the interaction of other pollutants originating 
from the same source. Indeed, a recent European multicenter study on 
respiratory mortality using a two-pollutant approach found an attenu-
ated effect of NO2 and PM, pollutants directly emitted from combustion 

sources (Stafoggia et al., 2022), as well as a US study (Moolgavkar et al., 
2013). On the contrary, another European study found a higher OR for 
allergic rhinitis due to NO2 exposure in the bi-pollutant model with 
PM10 (Burte et al., 2020). Recent studies concluded that under or 
over-estimation from single-pollutant models depends on the level of 
correlations among single-pollutants, suggesting the need to use multi-
pollutant models for high levels of correlation (Parajuli et al., 2021; Shin 
et al., 2022). The contrasting results found in the literature may be due 
to the different multi-pollutant approaches, considered outcomes and 
sources of exposure. They highlight the necessity to perform further 
studies to better comprehend this topic and to take advantages from the 
multipollutant statistical methods currently available, using comparable 
study designs for multipollutant effect analysis (Davalos et al., 2017; 
Shin et al., 2022). 

4.1. Limitations and strengths 

The use of questionnaires for collecting symptom/disease data might 
be a limitation because it is potentially affected by a reporting bias, as it 
relies upon individual recall. Nevertheless, the standardized question-
naire is one of the main investigation tools in respiratory epidemiology 
(Bakke et al., 2011; Pistelli and Maio, 2014). It is to be pointed out that 
in Pisa and in GEIRD studies there were some differences in the ques-
tionnaire used, but only comparable or identical questions were chosen. 

It is also to point out that asthma and allergic rhinitis are charac-
terized by a strong hereditability; international guidelines and 
consensus statements report that family history of allergic diseases in-
creases the probability of developing asthma and allergic rhinitis (GINA, 
2022; Wise et al., 2018). However, information about asthma/allergy 
family history was only available for a small sub-sample (19%), which 
was not representative of our population. 

The different distribution of general characteristics found between 
the six cities depends on the different study design and selection criteria, 
as described in Table A1 of SM. Pisa study sample was characterized by 
older age and lower educational level since it consisted of an aging 
longitudinal sample (participating in an 18-yr follow-up); GEIRD study 
consisted of cross-sectional samples characterized by a protocol-defined 
age range (as defined in Table A1 of SM). Three centers of the GEIRD 
study didn’t select elderly people (≥65 yrs) (Pavia, Turin and Ancona). 
However, sensitivity analyses considering only the three cities whose 
participants represented the entire age distribution of an adult general 
population (Pisa, Sassari and Verona) were in line with the findings from 
the main analysis (Table A6 of SM). 

Moreover, the annual average exposure levels were calculated for the 
year 2013–2015, i.e., after the field surveys of Pisa and GEIRD studies, 
since these were the years with available estimates for all the analyzed 
air pollutants. However, previous papers demonstrated that within-city 
spatial patterns remain constant over the years, also when the mean 
concentrations of air pollutants change over time (Fasola et al., 2020; 
Jacquemin et al., 2012). This assumption about the spatial stability of air 
pollution contrasts permitted the application of recently developed 
models in previously enrolled cohorts, as made in other international 
studies (Schikowski et al., 2014; Hoek, 2017). 

The main strength of this study is the large population sample of 
individuals spanning from early adulthood to late adulthood and living 
in different Italian geoclimatic areas, achieved by combining previous 
analytical epidemiological data (symptoms/diseases and individual 
potential confounders), as well as high-resolution estimates of several 
air pollutants concentration at residential level. 

Another important strength is the use of a unique exposure model for 
all the investigated cities. This allows limiting the heterogeneity intro-
duced when different modeling approaches are used in multi-centric 
studies to evaluate air pollution exposure. 

At last, an important strength is the application of PCLR for 
addressing the multicollinearity issue of conventional statistical ap-
proaches, therefore allowing to separate the independent contribution 
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of four pollutants through their inclusion in the same model equation. 
Although PCA-based approaches have been recognized to belong to the 
class of shrinkage (regularization) methods, so far PCA has mainly been 
used for determining mixture effects rather than for assigning loadings 
to each pollutant (Billionnet et al., 2012; Tran et al., 2018). Conversely, 
PCLR takes advantage of the re-parameterization induced by PCA in the 
conventional logistic regression model to back transform the mixture 
effects (that may be awkward to interpret) to the original scale of pol-
lutants. PCLR also offers several advantages over competing regulari-
zation methods like Ridge or Lasso regression: for example, Ridge/Lasso 
regression may not be suitable to deal, at the same time, with issues of 
regularization of a subset of regression coefficients, inclusion of random 
effects, and computation of reliable standard errors (especially in the 
case of a binary outcome). 

Thus, using single-pollutant models, an overestimation of the effect 
may be determined by not considering the interaction of other pollutants 
originating from the same source. 

5. Conclusions 

This study suggests that using single-pollutant models can lead to an 
overestimation of the health effects, which may be determined by not 
accounting for the complex nature of the exposure mixture. The use of 
an innovative multipollutant approach allowed the identification of 
PM2.5 and PM10 as the main drivers of the detrimental effect of the air 
pollution mixture on respiratory and allergic symptoms/diseases in 
Italian adults. Moreover, new evidence about NO2 and summer O3 ef-
fects emerged. 

Our findings add new scientific evidence supporting the necessity to 
further reduce the exposure of the population for achieving a global 
health benefit, according to the latest WHO guidelines (WHO, 2021). 

A major effort is needed to prevent the onset and the exacerbation of 
chronic diseases, by reconsidering not only current air quality legisla-
tion and regulations but also through awareness of the importance of 
virtuous lifestyles. 
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ing; Maria Beatrice Bilò: Investigation, Data curation, Writing – review 
& editing; Roberto Bono: Investigation, Data curation, Writing – review 
& editing; Stefania La Grutta: Writing – review & editing; Pierpaolo 
Marchetti: Methodology, Validation, Data curation, Writing – review & 
editing; Giuseppe Sarno: Investigation, Data curation, Writing – review 
& editing; Giulia Squillacioti: Writing – review & editing; Ilaria Stanisci: 
Writing – review & editing; Pietro Pirina: Investigation, Data curation, 
Writing – review & editing; Sofia Tagliaferro: Methodology, Writing – 
review & editing; Giuseppe Verlato: Investigation, Data curation, 
Writing – review & editing, Funding acquisition; Simona Villani: 
Investigation, Data curation, Writing – review & editing; Claudio Gar-
iazzo: Writing – review & editing; Massimo Stafoggia: Writing – review 
& editing, Funding acquisition; Giovanni Viegi: Investigation, Data 
curation, Writing – review & editing. 

Declaration of competing interest 

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing interests: 
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